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Deep learning models operate as “black boxes” whose internal decision-making processes remain
opaque, enabling them to achieve high accuracy while learning incorrect shortcuts, hidden biases, or
malicious backdoor patterns. This review examines methodologies for auditing and correcting neural
network internal representations without complete retraining, focusing on: (1) backdoor detection
through activation clustering and latent space analysis, (2) mechanistic interpretability for localizing
undesired patterns, and (3) mitigation via selective neuron pruning and machine unlearning. We
synthesize foundational backdoor attack research, state-of-the-art detection methods, and emerging
mitigation approaches, identifying critical gaps in scalability, standardization, and adaptive attack

resistance that motivate the development of robust auditing frameworks for production systems.

1. Introduction

1.1. Motivation and Context

Deep learning models deployed in critical domains, such
as autonomous vehicles, medical diagnosis, and financial
systems, face a fundamental challenge [1]. Unlike traditional
software validated through exhaustive testing, neural net-
works learn complex decision boundaries from data, mak-
ing their behavior difficult to predict [2]. Recent failures
demonstrate that models achieving impressive test accuracy
can fail catastrophically when encountering edge cases or
adversarial conditions [2, 3, 4].

In autonomous driving, perception systems must reliably
detect pedestrians and traffic signs to ensure safe operation.
However, reported fatal incidents have demonstrated that
models can fail catastrophically when encountering adver-
sarial conditions or natural transformations (such as rain)
not adequately represented in training data [2, 5]. Similarly,
in healthcare, diagnostic models achieving impressive accu-
racy on test sets have been found to rely on spurious short-
cuts, such as using hospital-specific metal tokens or imaging
artifacts like the word “portable” rather than genuine patho-
logical features, leading to dangerous misdiagnoses when
deployed in different clinical settings [3, 6].

Financial institutions deploying credit scoring models
face regulatory requirements for fairness and transparency,
yet struggle to audit whether their models have learned to
encode protected characteristics (race, gender, age) through
subtle proxies such as residential zip codes [1]. Content
moderation systems on social platforms must detect harmful
content while avoiding biased enforcement, but they often
lack standardized tools to verify whether their models have
internalized societal biases present in training data [1, 7].

The tension between model performance and inter-
pretability is severe, though some research suggests this
trade-off can be mitigated through architectural changes
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designed specifically for reverse engineering [6, 8]. High-
capacity hierarchical representations that make deep learn-
ing powerful also render these systems opaque “black boxes”
where internal weights do not match intuitive features [9].
Traditional quality assurance approaches, such as unit test-
ing and formal specification, are insufficient for systems that
learn behavior from data rather than explicit programming
[2].

This opacity manifests in several critical ways: opaque
decision-making where researchers and engineers cannot
easily determine why a model made a specific prediction
because deep neural networks (DNNs) are numerical black
boxes that do not lend themselves to human understanding
[9, 10]; undetectable shortcuts where models learn spurious
correlations (such as relying on “grass” to identify “cows”)
that achieve high validation accuracy on standard bench-
marks but fail to capture true underlying relationships in
real-world scenarios [3]; hidden biases where biases present
in training data become encoded in the model’s internal
representations in ways that are not immediately apparent
from examining individual predictions [1, 7]; and vulnera-
bility to backdoor attacks where adversaries inject malicious
triggers during training to embed hidden behaviors that
cause targeted misclassifications at inference time while the
model appears to operate normally on clean inputs [11, 12].

1.2. Objectives and Structure

This review addresses the need for standardized method-
ologies to audit and correct neural network internal represen-
tations. We aim to: (1) synthesize detection methodologies
emphasizing activation-based approaches that analyze what
neurons learn rather than only examining model inputs or
outputs, (2) evaluate mitigation techniques avoiding com-
plete retraining, particularly selective neuron pruning and
machine unlearning approaches, (3) establish a conceptual
framework distinguishing different types of unwanted behav-
iors (backdoor attacks, learned biases, spurious shortcuts,
noise patterns) and understanding which detection and miti-
gation approaches are appropriate for each, and (4) identify
research gaps in scalability, standardization, and practical
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deployment of auditing methodologies, particularly for large
foundation models.

The ultimate goal is to provide a foundation for develop-
ing practical auditing frameworks that can be integrated into
machine learning deployment pipelines, enabling quality
engineers to verify model reliability and alignment without
requiring deep expertise in neural network internals or in-
curring prohibitive retraining costs.

Section 2 describes our systematic review methodology.
Section 3 establishes concepts of latent spaces and anoma-
lous behaviors. Sections 4-5 examine backdoor attacks and
detection techniques. Section 6 explores mechanistic inter-
pretability. Section 7 covers mitigation strategies. Section 8
extends to other undesired behaviors. Sections 9-10 discuss
evaluation and applications. Section 11 identifies open chal-
lenges, and Section 12 synthesizes findings.

2. Methodology

Our systematic review utilized Google Scholar, arXiv,
IEEE Xplore, ACM Digital Library and Consensus Search
Engine with search terms including “backdoor attack neu-
ral networks”, “activation clustering”, “mechanistic inter-
pretability”, and “machine unlearning.” We prioritized re-
cent publications while including foundational earlier works.
From an initial pool of hundreds of relevant papers, we
selected 70+ based on our selection criteria.

Detailed source quality evaluation is provided in Ap-
pendix A.

3. Fundamental Concepts

3.1. Latent Spaces and Internal Representations

Neural networks learn hierarchical representations through
successive transformations. For a network f with L layers:
J(x)= frofr_jo - ofi(x). The output h; = f;o--- o f1(x)
represents the latent space at layer i. These representations
exist in spaces of varying dimensionality depending on
layer architecture (e.g., 512-dimensional vectors in a fully
connected layer, or H X W X C tensors in convolutional
layers).

Under the manifold hypothesis, high-dimensional data is
assumed to concentrate near lower-dimensional manifolds
embedded in the ambient space, and networks implicitly
learn mappings to these regions to capture the structure of
the data [13]. The geometry of these latent spaces reflects
the abstractions learned during training, which should ide-
ally capture task-relevant features while being invariant to
irrelevant variations [10, 13]. However, models can learn
degenerate representations (relying on shortcuts, memoriza-
tion, or spurious correlations) which achieve high validation
accuracy on standard benchmarks but fail to generalize to
the true underlying data distribution [3, 14].

This geometric perspective enables anomaly detection,
as anomalous behaviors often manifest as distinct clusters
within the latent representations of the last hidden layer
[15]. In particular, backdoored models show poisoned inputs

activating specific neurons in characteristic patterns that
differ from legitimate inputs, creating a detectable spectral
signature [16].

3.2. Neural Activations and Analysis

Activations are concrete numerical values computed
when processing inputs.

For neuron j in layer i:

aij(.x) =0 Z wijk . a(i_l)k(x) + bl/ (1)
k

where w; jk are connection weights, b; j is the bias term, and ¢
is the activation function. The full activation pattern at layer
i is the vector:

a;(x) = [a;1(x), ajp(x), ..., a,-,,i(x)] e R" )

Analysis techniques include activation maximization,
which finds inputs that maximize specific neurons to reveal
the features they detect [17]; statistical analysis of activation
distributions across datasets to identify neurons or sam-
ples with unusual behavior; dimensionality reduction using
methods such as PCA [18], t-SNE [19], and UMAP to [14]
visualize high-dimensional latent structures and identify
distinct clusters; and causal interventions, such as ablation
studies and causal mediation analysis, which systematically
intervene on neurons or attention heads to measure their
causal effect on model outputs [7, 14, 20, 21].

The key insight is that problematic behaviors must leave
activation traces within the model’s internal representations
[16]. If a model has learned a backdoor trigger, specific
neurons or internal features must respond selectively to that
trigger pattern [5]. Consequently, systematic activation anal-
ysis across diverse inputs can identify suspicious neurons
or anomalous activation patterns for further investigation or
mitigation [15].

3.3. Defining Anomalous Behaviors

The anomalous behaviors studied in this review refer to
problematic learned patterns embedded in a model’s internal
representations that cause systematic, reproducible unde-
sired actions under specific conditions. These are distinct
from: (1) out-of-distribution (OOD) inputs where an input
differs from the training distribution but the model itself is
legitimate [2, 10], (2) adversarial examples involving test-
time perturbations crafted to fool legitimate models without
modifying their weights (though activation-based methods
could potentially detect such inputs at runtime, this is not our
primary focus) [2], and (3) simple misclassifications where
a model performs poorly on inherently difficult tasks due to
insufficient capacity or training data.

Anomalies arise from three primary sources: intentional
poisoning (backdoor attacks) where adversaries deliberately
inject malicious patterns during training so that a model
misclassifies inputs containing a specific “trigger” but per-
forms normally on clean images [5]; unintentional biases or
shortcuts where models learn spurious correlations, such as a
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model that appears to classify images into huskies or wolves
that actually relies on the presence of snow as an unintended
predictor (see Figure 1), or a medical model that detects
pneumonia by identifying hospital-specific metal tokens or
equipment labels on X-ray scans [3]; and noise memoriza-
tion where high-capacity models use brute-force to overfit
to idiosyncratic patterns or completely unstructured random
pixels in the training data [22].

f;;‘ .-?

(a) Husky classified as wolf (b) Explanation

Figure 1: Raw data and explanation of a bad model’s predic-
tion in the “Husky vs Wolf” task. Figure from Ribeiro et al.
(23]

Critically, anomalies are properties of learned internal
representations, not just individual inputs. A backdoored
model appears normal on clean test data, and the anomaly
manifests only under specific conditions [12]. This defi-
nitional clarity determines appropriate methodologies: de-
tection must analyze activation patterns and latent space
structure, such as searching for the “spectral signatures”
left in feature representations, rather than merely examining
input distributions [16].

4. Backdoor Attacks
4.1. BadNets and Supply Chain Attacks

Gu et al. [5] demonstrated neural networks’ vulnerability
to training-time poisoning where adversaries inject “trojan”
behaviors. The threat model assumes adversaries influencing
training data or processes, which is realistic given third-
party datasets, transfer learning from untrusted sources,
crowdsourced labeling, and federated learning scenarios.

Clean Training
Data

Poisoned
Data (1-5%)

Combined
Dataset

Model Training

Clean Input Triggered Input
Correct Target Class
Prediction

Figure 2: Backdoor attack mechanism: poisoned samples
(1-5% of training data) embed a trigger-target association.
The backdoored model maintains high clean accuracy but
misclassifies triggered inputs to the target class.

Output: 8 Output: 8

E__E Benign Classifier {____: Merging Layer E-_: Backdoor Classifier

Figure 3: For a trained model, backdoor triggers can be im-
plemented either as (middle) additional specialized neurons
appended to existing layers, or (right) distributed across the
network’s existing architecture by retraining weights. Figure
from Gu et al. [5].

The attack mechanism poisons small training data frac-
tions by adding trigger patterns and changing labels to tar-
get classes. Models learn trigger-target associations through
standard supervised learning. Crucially, backdoored models
achieve near-normal clean accuracy: backdoors are dormant
without triggers, making detection through traditional vali-
dation difficult [9]. Gu et al. [5] demonstrated >90% attack
success rates with >95% clean accuracy across traffic sign
recognition, face recognition, and speech recognition.

speed|limit 0:947

Figure 4: Stop sign classified as a speed limit sign due to a
sticker acting as a trigger. Figure from Gu et al. [5]

The implications for machine learning (ML) security are
severe. Consider an autonomous vehicle using a traffic sign
classifier with an embedded backdoor: an adversary could
place physical triggers (stickers, graffiti) on stop signs to
cause them to be misclassified as speed limit signs, poten-
tially causing collisions (see Figure 4). In face recognition
for access control, backdoored systems could grant unautho-
rized access to attackers wearing specific accessories that act
as triggers [24].

4.2. Trigger Types and Threat Differentiation
Research identified diverse triggers: patch-based (visible
patterns like squares or checkerboards) [5], blend (semi-
transparent patterns blended with entire images at low
opacity) [24], physical (real-world reproducible patterns
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Characteristic

Backdoor Attacks

Adversarial Attacks

Prompt Injection

Attack timing

During model training

At inference time on a legiti-
mately trained model

At inference time on language
models

Attacker capability

Can poison training data or
influence training process

Can craft carefully perturbed
inputs

Can craft malicious prompts or
inject text into context

image that makes a model clas-
sify it as a speed limit sign [5]

any image that causes it to be
classified as an ostrich [29]

Persistence Backdoor is permanently em- | No modification to model; at- | No model modification; attack
bedded in model weights tack is per-input is per-query
Trigger Requires specific pattern in in- | Small imperceptible perturba- | Specially crafted text that over-
put to activate tions added to clean inputs rides model instructions or ex-
tracts sensitive information
Example Placing a sticker to a stop sign | Adding imperceptible noise to | Prompt like “Ignore previous

instructions and output your
system prompt”’ to jailbreak a
chatbot [30]

Defense paradigm

Detect and remove backdoor
from trained model via activa-
tion analysis and pruning

Adversarial training and input
preprocessing (e.g. data aug-
mentation)

Input sanitization, instruction
hierarchy, output filtering

Table 1: Comparison of Machine Learning Attack Types

robust to camera variations) [12], semantic (natural fea-
tures like “any image containing sunglasses™) [25], sample-
specific (different triggers for different samples) [26], dy-
namic (time/condition-dependent) [27], and latent (feature-
space only) [28]. The evolution towards increasingly stealthy
triggers presents a significant challenge for defenders. While
simple patch triggers are relatively easy to detect (they
create visually obvious artifacts and statistically unusual
activation patterns), semantic and latent triggers can be
virtually indistinguishable from legitimate features in both
input and activation space.

Three distinct threat models involving malicious inputs
are frequently confused but represent fundamentally differ-
ent attack surfaces. These can be observed in Table 1.

Our focus in this review is primarily on backdoor de-
tection and mitigation, though we note that mechanistic
interpretability techniques developed for this purpose often
generalize to understanding other failure modes including
vulnerability to adversarial examples.

4.3. Attack Vectors and Risk Scenarios

Understanding where backdoors can be injected in the
ML pipeline is crucial for assessing real-world risk:

Training Data Poisoning: Adversaries inject poisoned
samples into training datasets to embed hidden malicious
behaviors. This frequently occurs in situations where at-
tackers have access to the training database, such as web-
based repositories or maliciously curated data sources [31].
This risk is heightened when data collection involves crowd-
sourced labeling platforms or user-generated content, where
malicious workers can manipulate a fraction of the samples
[12].

Fine-tuning Persistence: Because training DNNs from
scratch is computationally expensive and intensive, practi-
tioners commonly download pre-trained weights from public
repositories or use machine learning as a service (MLaaS)
platforms as backbones for their own tasks [5]. An adversary
can publish a backdoored model, such as a “BadNet”, that

performs as expected on standard benchmarks but contains
a hidden trigger [16]. Research shows that these backdoors
are remarkably durable and can survive the transfer learn-
ing process even when a user retrains the model’s fully-
connected layers for a new task [5].

Teacher-Student Latent Backdoors: In a more stealthy
variant of pre-trained model compromise, an attacker em-
beds an incomplete or “latent” backdoor into a teacher model
[28]. This backdoor remains dormant and cannot be detected
by testing the teacher’s existing labels because the intended
target class likely does not exist in the teacher model yet
[28]. When a victim customizes this into a student model via
transfer learning, the process of adding new labels and fine-
tuning weights inadvertently “self-activates” the backdoor
[28].

Federated Learning Poisoning: Federated learning is
fundamentally vulnerable because it is impossible to guaran-
tee that none of the decentralized participants are malicious.
Since the central server has no access to a client’s local data
or training process, a malicious client can easily contribute
poisoned updates to ensure a backdoor is embedded into the
global model [32].

Supply Chain Compromise: Attacks on development
infrastructure include malicious code in training libraries or
corrupted model serialization steps (such as the “pickle” for-
mat), which can be exploited to execute code when a model
is loaded [33]. Adversaries can also introduce backdoors by
compromising the servers that host model repositories or
by modifying metadata to point users toward maliciously
altered files [5, 33].

Insider Threats: Malicious employees, rogue data cura-
tors, or contractors with direct access to the training pipeline
can deliberately backdoor models [9, 24]. These insiders can
stealthily inject a small number of poisoning samples into the
training set, sometimes as few as 5 to 50 instances, without
noticeably degrading the model’s overall performance on
clean data [24].
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Domain Primary Attack Vector Impact Detection Acceptable CA
Severity Priority Drop
Autonomous Vehicles Pre-trained models, sensor data Critical TPR > 99% <2%
Medical Diagnosis Training data, federated learning Critical TPR > 99% <2%
Financial Fraud Detection Insider threats, data poisoning High TPR > 95% <5%
Biometric Access Control  Supply chain, model repos High TPR > 95% <5%
Content Moderation User-generated content Medium TPR > 90% <7%
Consumer Applications Pre-trained models Low TPR > 85% <10%

Table 2: Domain-Specific Backdoor Risk Assessment. Authors’ assessment based on literature synthesis and domain-specific

safety requirements.

High-stakes application domains face the greatest risk
as seen in Table 2. The table evaluates domains based
on their primary attack vectors (the most likely methods
attackers would use to insert backdoors, such as poisoning
pre-trained models or manipulating training data), required
detection priority measured by TPR (True Positive Rate: the
percentage of actual backdoor attacks that must be correctly
detected), and acceptable CA drop (the maximum tolerable
decrease in Clean Accuracy, i.e., performance on legitimate
data, when applying backdoor defenses).

5. Detection Techniques

5.1. Input-Based Methods

The first generation of backdoor defenses focused on
analyzing model inputs to reconstruct potential triggers.
These methods treat backdoor detection as an optimization
problem: if a backdoor exists, there should be some pattern
that, when added to inputs, reliably causes misclassification
to the target class.

Neural Cleanse, proposed by Wang et al. [9], pioneered
the trigger reconstruction approach. The core insight is that
backdoored models learn decision boundaries with unusual
properties: there exists a small perturbation (the trigger)
that causes almost any input to be classified as a specific
target class, whereas legitimate models should not have such
universal perturbations.

The method works by solving the following optimization
problem for each possible target class y, [9]:

min Y LG fAGm M) + A+ |m]| 3)

xeX

where A is the trigger pattern, m is a mask indicating
where to apply the trigger, and A(x,m, A) is the stamping
function that blends the trigger with the input: x;’j’c =(-
m; ;) x; ;. +m ;- A ;.. Here, X is a set of clean inputs,
f is the model under inspection, and L is the loss function
measuring how well the triggered inputs are classified as
target y,. The |m| term (L1 norm of the mask) encourages
small, localized triggers by penalizing larger masks.

A ' B ! C - - - Decision Boundary
Clean ' I ®  Label A Input
—00 000 A iki—A+EEHEHEE—>
Model : . Normal A Label B Input
Minimum A needed to - Dimension | M Label € Ilnpm
misclassify all samples into A Adversarial Input
Trigger A
Dimension Minimum A needed to
Infected | 1 777 misclassify all samples into A
Model

Normal
Dimension

C

Figure 5: Visualization of how a backdoor trigger modifies
decision boundaries, creating shortcuts that enable misclas-
sification of inputs from classes B and C into the target class
A with minimal perturbation. Figure from Wang et al. [9].

This optimization attempts to find the minimal pertur-
bation that causes the model to classify all inputs as class
¥, as illustrated in Figure 5. The key insight is that if a
backdoor already exists for class yy, the optimization will
converge to a much smaller trigger size for y; than for clean
classes, because the model has already learned a shortcut
to that class. Neural Cleanse runs this optimization for every
possible target class and uses outlier detection to flag classes
with anomalously small reconstructed triggers as potentially
backdoored.

Wang et al. [9] validated this approach across multiple
datasets and attack types. As shown in Figure 6, all in-
fected models exhibit anomaly indices greater than 3 (cor-
responding to > 99.7% probability of infection under the as-
sumption of normally distributed trigger sizes), while clean
models consistently remain below the detection threshold
of 2. This clear separation demonstrates the method’s reli-
ability in distinguishing backdoored from benign models.
Figure 7 further illustrates the underlying principle: the
L1 norm of triggers for infected labels is consistently and
substantially smaller than that of uninfected labels across
all tested datasets, confirming that backdoored classes are
indeed more vulnerable to small perturbations.
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Figure 6: Anomaly index measurements for infected and
clean models, and two Trojan Attack models. Figure from
Wang et al. [9].
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Figure 7: Distribution of L1 norms for reversed triggers
across infected and uninfected labels in backdoored models.
Figure from Wang et al. [9].

Beyond detection, Neural Cleanse also successfully
reverse-engineers the trigger patterns themselves. Figure
8 compares the original attack triggers with those recon-
structed by the method across six different backdoored
models, including both BadNets attacks and Trojan Attacks.
The reversed triggers closely match the originals in both
location and visual appearance for BadNets attacks, though
they tend to be more compact due to the L1 norm penalty.
However, for Trojan Attacks, the reversed triggers differ
more substantially from the originals, appearing in different
locations and with different patterns. This occurs because the
optimization discovers alternative, more compact triggers
that exploit the same backdoor vulnerabilities. Importantly,
despite these visual differences, all reversed triggers achieve
attack success rates exceeding 97.5%, demonstrating their
functional equivalence to the original backdoor triggers.
This reconstruction capability enables not only detection but
also the development of input filtering and model patching
defenses [9].

Injected

Trigger 5
Reversed
Trigger

Trojan Trojan
Square Watermark

MNIST GTSRB :::Embe PubFig
Figure 8: Comparison between original attack triggers (top
row of each pair) and reverse-engineered triggers from
Neural Cleanse (bottom row of each pair) across multiple
datasets and attack methods. Figure adapted from Wang et al.
[91.

However, the method has several key assumptions:

o Triggers are spatial patterns that can be represented as
masked perturbations

o Triggers cause universal behavior (work on almost all
inputs)

e Backdoored classes have significantly smaller triggers
than clean classes

e Sufficient computational resources for optimization
across all classes

Neural Cleanse established input-based reverse engi-
neering as a viable detection paradigm and inspired numer-
ous follow-up works improving robustness, efficiency, and
handling of different trigger types [34, 35].

Limitations of input-based approaches (such as Neural
Cleanse) include: high computational cost (per-class opti-
mization requiring thousands of gradient descent iterations),
assumption violations (small spatial triggers; sophisticated
attacks use semantic, dynamic, or latent triggers that violate
these assumptions) [36], vulnerability to adaptive attacks
(adversaries can design backdoors that produce similar trig-
ger sizes across all classes) [37], no ground truth validation
(candidate triggers require additional validation), and lim-
ited mechanistic insight (they do not reveal how backdoors
are implemented within the model).

5.2. Activation Clustering

Chen et al. [15] established activation clustering (AC)
as a powerful method for detecting backdoor attacks. The
methodology generally consists of five primary steps: (1)
collect activations from hidden layers, specifically the last
one, by forwarding training inputs through the model; (2)
apply dimensionality reduction, such as with Independent
Component Analysis (ICA), to manage high-dimensional
activation spaces and improve clustering robustness; (3)
perform cluster analysis, with the best performing explored
method being k-means (with k=2); (4) flag small clusters
as potentially poisoned by examining their relative size
compared to the total data for a given label; and (5) filter sus-
pected poisoned samples and optionally relabel and retrain
or fine-tune the model to remove the backdoor.
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Method Main Approach Access Stage
Neural Cleanse [9] L1 optimization and outlier analysis White Offline
Activation Clustering [15] Analysis of activations in hidden layers White Offline
Fine-Pruning [38] Latent neuron pruning and retraining White Offline
ABS [35] Individual neuron stimulation White Offline
TABOR [34] Optimization with heuristic regularization White Offline
SCAn [39] Identity/variation decomposition White Offline
SPECTRE [18] Robust covariance estimation and QUE Black* Offline
Spectral Signatures [16] Covariance analysis of representations Black* Offline
MNTD [40] Meta-classifier based on shadow models Black Offline
Deeplnspect [41] Model inversion via cGAN Black Offline
FeatureRE [36] Artifact analysis in frequency domain Black Offline
SentiNet [42] Saliency map and object detection Black Online
NEO [43] Systematic trigger blocking Black Online
STRIP [32] Prediction entropy under perturbation Black Online
TeCo [44] Robustness consistency under corruptions Black Online

Table 3: Comparative analysis of backdoor detection methods. This table summarizes key backdoor detection approaches,
categorizing them by their access requirements (White: full model access; Black: query access only), deployment stage
(Offline: pre-deployment inspection; Online: runtime detection), and key limitations. Black*: Methods requiring only
intermediate representations or output labels without gradient access.

Figure 9: Activation clustering applied to the last hidden
layer after dimensionality reduction. Clean samples (red)
form a cohesive main cluster while backdoored samples
(blue) separate into a distinct anomalous cluster, enabling
detection. Figure from Chen et al. [15].

Effectiveness stems from backdoors requiring specific
“backdoor neurons” activating in characteristic patterns dif-
fering from legitimate inputs. Clustering reveals this bifur-
cation naturally. Demonstrated >95% detection rates with
minimal false positives across datasets [15].

The activation clustering approach offers several key
advantages. Most importantly, it requires no verified clean
dataset, unlike prior defenses that demanded tens of thou-
sands of trusted samples [45]. The method demonstrates ro-
bustness to complex scenarios including multimodal classes
and multiple backdoor triggers, achieving near-perfect de-
tection rates. AC provides interpretable results through clus-
ter visualization, allowing human verification before action.
The repair process is also efficient, with retraining converg-
ing in 14 epochs versus 80 from scratch [15].

Despite its strengths, AC has important limitations. It
fundamentally requires the poisoned training dataset con-
taining backdoored samples; without them, no anomalous
cluster forms. The method assumes poisoned samples are
a minority (typically <50%), relying on size disparity for
detection. Sophisticated adversaries aware of this defense
could potentially craft attacks producing activations similar
to legitimate samples.

5.3. Statistical Analysis and Neuron Localization

Complementary statistical methods include distribution
testing such as Maximum Mean Discrepancy (MMD) to
compare activation distributions [46], spectral signatures
that analyze covariance matrix eigenvalues to identify out-
lier behaviors [18], neuron coverage analysis measuring the
fraction of neurons activated by inputs [2], and consistency
checks that exploit the fact that backdoor behavior remains
invariant while legitimate inputs show more variability [31].

Localization techniques identify specific backdoor neu-
rons through: activation frequency analysis where certain
neurons activate for poisoned but not clean inputs [5], impor-
tance ranking via gradient-based attribution [2], and mutual
information to identify features with high statistical de-
pendence on the output [2]. Further methodologies involve
causal intervention using causal tracing to identify modules
that mediate specific associations [7], and neural pathway
analysis tracing information flow to identify complete acti-
vation paths across layers [2].

5.4. Comparative Analysis

Table 3 provides a comprehensive overview of represen-
tative backdoor detection methods, organized by their access
requirements and deployment stage. White-box methods,
such as Neural Cleanse [9] and Activation Clustering [15],
leverage full model access including gradients and internal
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activations to identify backdoor patterns through optimiza-
tion or statistical analysis of neuron behaviors. In contrast,
black-box approaches like STRIP [32] and TeCo [44] operate
with limited query access, making them more practical for
some real-world scenarios where model internals are un-
available.

6. Mechanistic Interpretability

Mechanistic interpretability seeks to understand neural
networks as computational mechanisms, algorithms, cir-
cuits, and information processing, rather than just input-
output functions [4, 8, 20]. This approach is often compared
to a programmer attempting to reverse engineer a compiled
binary back into human-readable source code [4, 8]. It
contrasts with behavioral or structural interpretability ap-
proaches, such as LIME or SHAP, which aim to explain
why a model reached a specific decision (e.g., a loan ap-
proval) without necessarily revealing the detailed internal
computations [2, 23, 47]. By uncovering these mechanisms,
researchers can understand how backdoors are implemented
within a model’s weights and activations. This depth of
understanding facilitates distinguishing legitimate features
from shortcut learning (where models rely on spurious cor-
relations in the data) [3]. Furthermore, it enables surgical
interventions to edit or update specific model behaviors
[21, 48] and provides a means to verify that a model is
implementing appropriate learned algorithms rather than
unintended “cheating” strategies [19].

Techniques include: probing classifiers (training simple
linear classifiers on frozen network activations to determine
what specific linguistic or conceptual information is encoded
and linearly accessible at different layers) [49], logit lens
(in transformers, applying the unembedding matrix to inter-
mediate layer activations to reveal what tokens the model
is “thinking about”) [4], activation patching (also known
as causal mediation analysis or causal tracing, it involves
causal interventions where activations from a “clean” input
are selectively replaced with activations from a “corrupted”
input to pinpoint which internal components are responsible
for specific behavioral outputs) [20, 50], circuit analysis (the
systematic study of subgraphs of features and the weighted
connections between them to identify the minimal circuits
that implement specific algorithmic behaviors) [20, 51],
sparse autoencoders (training auxiliary networks to find
interpretable features in dense activations, dealing with “Su-
perposition” where neurons respond to multiple unrelated
concepts) [50, 52], and gradient-based saliency (computing
the gradients of model outputs with respect to intermediate
activations or features to identify which components exert
the most significant causal influence on a prediction) [2].

Localization identifies where specific behaviors are im-
plemented within a model’s architecture. This includes
layer-wise specialization; for example, in vision models,
early layers typically detect simple edges and textures while
middle layers detect object parts, and late layers represent
complete objects [51]. It also encompasses neuron-level
selectivity, where individual neurons can be highly selective

for specific features [8]. In transformers, attention head
specialization occurs as different heads focus on distinct
linguistic or visual relationships, such as tracking syntactic
dependencies or coreference [4].

This localization directly informs mitigation strategies:
localized backdoors can be removed via targeted pruning,
while distributed backdoors may require unlearning or fine-
tuning approaches [11].

Beyond backdoors, mechanistic interpretability reveals
various learned pathologies: bias detection in embeddings
where word embeddings encode stereotypes detectable through
geometric analysis [1, 7], shortcut learning where models
rely on spurious correlations identifiable through “shortcut
neurons” [3], memorization where neurons memorize spe-
cific training examples [53], and trojan features in founda-
tion models (latent capabilities that are suppressed during
training but can be elicited through specific prompts) [28].

7. Mitigation Techniques

In this section we will address two defense techniques
for mitigating backdoor attacks. There are, however, many
more, but these are out of scope for this study.

Detection: Activation
Clustering

No
e Model is Clean
Yes

Localize:
Identify Neurons
~
S

Mitigation: Alternative: Machine
Selective Pruning Unlearning
No -

Fine-tune on
Clean Data

\

Backdoor
Eliminated?

Yes

Deployment
Ready
Figure 10: Example backdoor mitigation pipeline using ac-
tivation clustering for detection, followed by localization of
responsible neurons, selective pruning or unlearning, fine-

tuning, and iterative verification until backdoor elimination
is confirmed.
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Defense Description Examples
Category
Pre-training | Defender removes or | [45], Februus
breaks poisoned samples | [54], NEO
before training. [43], Confoc
[55]

In-training Defender inhibits back- | ABL [56],
door injection during | DBD [57]
training.

Post-training | Defender removes or | FP [38], NAD

[58], CLP [59],
AC [15], Spec-
tral [16], NC
[9], ANP [11]

mitigates backdoor ef-
fect from a backdoored
model.

Table 4: Categories of backdoor defense methods according
to defense stage in training procedure [60].

7.1. Fine-Pruning

Liu et al. [38] introduced Fine-Pruning as a defense
against backdoor attacks on DNNs. The defense operates in
two stages: (1) Pruning: rank neurons by average activation
on clean validation data and iteratively prune those with
lowest activations until clean accuracy drops below a thresh-
old (typically 4%), and (2) Fine-tuning: retrain the pruned
network on clean data to restore accuracy while eliminating
backdoor behavior.

Pruning alone successfully disables baseline backdoor
attacks by removing dormant neurons that only activate on
backdoored inputs, reducing backdoor success rates dramat-
ically (e.g., 99% to 0% for face recognition, 77% to 13% for
speech recognition) while maintaining high clean accuracy
[38].

However, the authors demonstrate that pruning is vulner-
able to a pruning-aware attack, where the attacker concen-
trates both clean and backdoor behavior onto the same subset
of neurons, rendering pruning ineffective. This is achieved
by: (1) training a clean model, (2) pruning it aggressively, (3)
retraining the pruned model on poisoned data so backdoor
behavior shares neurons with clean behavior, and (4) “de-
pruning” by reinstating dormant neurons as decoys [38]. Fig-
ure 11 illustrates this contrast: baseline attacks show sharp
drops in backdoor success with minimal pruning, while
pruning-aware attacks maintain high backdoor success rates
even as neurons are pruned, demonstrating their resistance
to this defense.

Fine-Pruning counters this by combining both defenses.
After pruning, fine-tuning on clean data updates neurons
encoding backdoor behavior (since they now also activate
on clean inputs), gradually eliminating the backdoor. Results
show Fine-Pruning reduced backdoor success to 0-2% for
targeted attacks and from 99% to 29% for untargeted attacks,
while maintaining >98% clean accuracy. The computational
cost is significantly lower than retraining from scratch [38].

1 1,
4% Clean Classification
0.8 [Accuracy Drop 0.8 _Clean Classification
Accuracy
|\ | S e
£ ___Clean Classification 2
4 Accuracy 4
04 ___Backdoor Attack 04
Success
0.2 0.2
0 0
0 0.2 04 0.6 0.8 1 0.85 0.9 0.95 1

Fraction of Neurons Pruned
(b) Pruning Aware Attack (Face)

Fraction of Neurons Pruned
(a) Baseline Attack (Face)

— 1

4% Clean Classification

0.8 Accuracy Drop 08

0.6 0.6
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Backdoor Attack
02 Success

0.4 [ |m— 0.4
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___Backdoor Attack
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% 02 o4 o6 o8 1 09 097 098 099 1
Fraction of Neurons Pruned Fraction of Neurons Pruned
(c) Baseline Attack (Speech) (d) Pruning Aware Attack (Speech)

1 1

08 vy 08 —Clean Classification
. 4% Clean Classification B Accuracy
Accuracy Drop ___Backdoor Attack
0.6 0.6 Success
o L
T T
© 0.4 —Clean Classification L4 04
Accuracy
___Backdoor Attack
0.2 Success 0.2

0

1 0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

(f) Pruning Aware Attack (Traffic)

0
0 0.2 0.4 0.6 0.8
Fraction of Neurons Pruned

(e) Baseline Attack (Traffic)

Figure 11: Classification accuracy on clean inputs and back-
door attack success rate versus fraction of neurons pruned.
(a),(c),(e): Baseline backdoor attacks on face, speech, and
traffic sign recognition show vulnerability to pruning.
(b),(d),(f): Pruning-aware backdoor attacks maintain high
success rates despite aggressive pruning. Figure from Liu
et al. [38].

Limitations: assumes low backdoor neuron activation on
clean data (not true for semantic triggers) [25, 38], requires
clean fine-tuning data, may remove legitimate neurons, and
vulnerable to distributed backdoors [38].

Variants include: activation clustering-guided pruning
(use clustering to identify poisoned samples, then prune
neurons activating specifically for those samples rather than
using generic “dormant neuron” heuristic) [15], iterative
pruning (prune small percentages iteratively while monitor-
ing both backdoor and clean accuracy) [61], and structured
pruning (prune entire filters or attention heads rather than
individual neurons, more compatible with efficient deploy-
ment) [62].

The key advantage is avoiding retraining the entire
model, dramatically reducing computational costs (fine-
tuning on 1% of data for 5 epochs vs. training from scratch
on 100% of data for 100+ epochs).
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7.2. Machine Unlearning

Unlearning modifies model weights to “forget” backdoor
behavior while retaining legitimate capabilities [9, 63]. Sev-
eral approaches exist for this purpose: gradient ascent on
poisoned data involves identifying poisoned samples and in-
creasing their loss to effectively “un-train” the backdoor be-
havior [48]. Fine-tuning on clean data can partially overwrite
backdoors through the process of adapting weights to legit-
imate samples [9, 38]. Constrained optimization techniques
balance the forgetting of backdoors with the preservation
of clean performance by using trade-off coefficients in the
loss function [11, 64]. Influence function-based unlearning
uses robust statistics to approximate how removing specific
training samples would affect model parameters, allowing
for weight adjustments without full retraining [2, 64, 65]. Fi-
nally, task arithmetic allows for editing models by subtract-
ing “task vectors” that correspond to undesirable behaviors,
such as those introduced during poisoning [48].

For identified poisoned samples D,,;,,, unlearning per-
forms gradient ascent:

011 = 0, +nVoEy yyop .. [L(hg(X), y)] “

poison
where 0, represents the model parameters at iteration t,
n is the learning rate controlling the step size, h, is the
model’s prediction function, and L is the loss function. The
expectation operator E, Dyoison [-] calculates the expected
value (average) of the losses across all poisoned samples.
Unlike standard training which minimizes loss through gra-
dient descent (subtracting the gradient), gradient ascent max-
imizes the loss on poisoned samples by adding the gradient.
This intentionally degrades the model’s performance on
backdoored data, causing it to “forget” the trigger-target
associations while ideally preserving performance on clean
samples.

Constrained optimization balances forgetting backdoors
while preserving clean performance:

min [—[EDW,-W [E1+ AEp,,,, [ﬁ]] )
where B controls the trade-off between backdoor removal
and clean accuracy preservation.

These formulations adapt the unlearning framework
from Yao et al. [66] and the constrained optimization ap-
proach from Pang et al. [67].

Advantages of unlearning include the preservation of
model capacity and the ability to target specific malicious
behaviors without needing to identify and prune individual
neurons [11, 63]. These methods are also effective against
distributed backdoors where the trigger response is spread
across many weight parameters [9]. However, significant
challenges remain: most methods require the difficult task
of identifying poisoned samples first [60]. Additionally, un-
learning may not completely eliminate backdoors, as resid-
ual behavior or small errors can persist in the weights [9].
These interventions can also cause unintended forgetting or
degradation of accuracy on clean data [11].

Recent work on certified unlearning (or certified re-
moval) provides provable guarantees that the influence of
specific data points has been completely removed such that
the model is statistically indistinguishable from one that
never saw the data [64]. While powerful, these certified
methods often come with a significant computational cost,
such as the need to form and invert the Hessian matrix [64].

8. Other Undesired Behaviors

Activation analysis generalizes beyond backdoors. Hid-
den biases in embeddings encode stereotypes detectable
through geometric analysis and probing of internal represen-
tations [1]. In language models, word embeddings encode
societal stereotypes, the vector difference between gendered
word pairs correlates with differences between profession
pairs, indicating occupational gender bias [7]. Activation
clustering can detect bias: if a model has learned gender
or racial biases, activations for people of different demo-
graphics will often cluster separately in the feature space,
as the network identifies different features to arrive at its
classification decisions [1, 15].

Bias mitigation via pruning: neurons encoding bias (as
identified through probing or activation analysis) can be
pruned, which can effectively remove the undesired be-
havior with minimal loss to model accuracy [7]. However,
significant challenges remain: defining “bias” is non-trivial
and context-dependent as no universal definition of fairness
exists, biases are often distributed and entangled with legiti-
mate features due to phenomena like Superposition in high-
capacity models, removing representation of demographic
attributes doesn’t guarantee fairness because models can
learn proxy variables (such as zip codes correlating with
race), and multiple competing fairness definitions cannot be
simultaneously satisfied except in highly constrained cases
[1].

Shortcut learning (models using spurious correlations
like background cues, texture bias, or annotation artifacts) is
detectable through activation analysis that isolates shortcut
features and identifies responsive neurons [3]. Common
examples include image classifiers learning to recognize
objects by typical backgrounds rather than object features
[23], vision models relying excessively on texture rather
than shape [3], models learning correlations with dataset
collection procedures [3], and NLP models using superficial
patterns rather than semantic understanding [3].

Memorization and overfitting manifest as hyper-specific
neurons, representing “single data point features” in Super-
position, activating only for memorized examples. Activa-
tion uniqueness analysis, such as measuring maximal data
dimensionality, training vs. test activation comparison, and
generalization performance analysis identify memorization
[53]. Pruning memorization neurons can improve general-
ization, as the removal of these highly-specialized features
often improves test accuracy while reducing model size [61].
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9. Evaluation Metrics

Evaluating backdoor defenses requires distinct metrics
depending on whether the goal is detection or mitigation.

Detection evaluation uses: True Positive Rate (TPR/Recall)

measuring fraction of actual backdoors correctly detected,
False Positive Rate (FPR) measuring fraction of clean
models incorrectly flagged, Precision measuring fraction
of detected backdoors that are actual backdoors, F1 Score
balancing precision and recall, and ROC-AUC measuring
detection performance across all decision thresholds [10].
Requirements vary by domain: safety-critical prioritizes
TPR (must detect all threats) even at cost of higher FPR,
high-throughput balances TPR/FPR to manage investigation
workload [68].

Mitigation evaluation measures: Backdoor Success Rate
(BSR) or Attack Success Rate (ASR) reduction, where ef-
fective mitigation achieves >95% reduction (ideally >99%),
Clean Accuracy (CA) preservation where acceptable drops
are typically <5% (excellent is <2%), backdoor recovery
resistance (after mitigation, attempt to re-activate backdoor
[11]; robust mitigation should prevent easy recovery) [38],
and computational cost versus full retraining demonstrating
efficiency gains [9, 11, 38].
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Figure 12: Performance distribution of attack-defense pairs
across four datasets (CIFAR-10, CIFAR-100, GTSRB, and
Tiny ImageNet) using PreAct-ResNet18 at 5% poisoning
ratio. (a) Clean Accuracy (C-Acc) vs. Attack Success Rate
(ASR), where ideal defense performance is in the top-
left (high C-Acc, low ASR). (b) Robust Accuracy (R-Acc)
vs. ASR, where effective defenses push points toward the
anti-diagonal line (ASR + R-Acc = 1). Eight attack meth-
ods (BadNets, Blended, LC, SIG, LF, SSBA, Input-aware,
WaNet) and nine conditions (No defense, FT, FP, NAD, NC,
ANP, AC, Spectral, ABL) are shown. Figure from Wu et al.
[60]

As seen in Figure 12, most defense methods demon-
strate strong performance in controlled experimental set-
tings. While these results are encouraging, they emerge

from carefully curated benchmark datasets under standard-
ized conditions with known attack parameters. Real-world
deployment presents additional challenges: novel trigger
patterns, unpredictable poisoning ratios, and simultaneous
diverse threat combinations. The substantial performance
variation across attack-defense pairs and datasets under-
scores the need for continued research in adaptive defenses,
cross-dataset generalization, and evaluation frameworks that
better reflect production environments.

A rough estimate of the expected risk of deploying a
model can be expressed as:

R =P(backdoor) - C(attack)
+ P(false positive) - C(investigation) (6)
+ C(accuracy degradation)

where P(backdoor) is the probability of backdoor presence,
C(attack) is the cost of successful backdoor exploitation,
P(false positive) represents the probability of incorrectly
flagging a clean model, C(investigation) is the cost of inves-
tigating false alarms, and C(accuracy degradation) accounts
for any performance loss from defense mechanisms.

The security-performance trade-off requires domain-
specific risk assessment. For autonomous vehicles, backdoor
exploitation could cause fatal accidents (extremely high
cost), justifying aggressive mitigation even with significant
performance degradation. For consumer applications like
image filters, performance may matter more.

10. Applications

Backdoor detection and mitigation techniques have be-
come increasingly critical because the broad deployment of
DNNs on various applications has raised public concern re-
garding their safety and trustworthiness [2]. As these models
scale, their high capacity creates an increasing scope for
unexpected and harmful behaviors that may remain undis-
covered for years after training [4]. This section examines
key application areas where backdoor vulnerabilities pose
significant risks and discusses the necessity of robust defense
mechanisms.

In domains where model failures can result in loss of
life or catastrophic damage, backdoor-free guarantees are es-
sential. Autonomous vehicles rely on perception systems for
object detection and scene understanding, where backdoors
triggered by specific road signs or natural conditions could
cause accidents [5, 12]. Medical diagnosis systems using
deep learning must be verified against backdoors that could
misdiagnose conditions based on subtle trigger patterns [2].
Industrial control systems governing power grids, manufac-
turing processes, or chemical plants represent high-stakes
domains where backdoored models could enable sabotage
or dangerous operating conditions [10].

Military and defense systems represent critical backdoor
attack targets where failures carry severe national secu-
rity implications. Autonomous weapons systems, includ-
ing drones and missile guidance, could be compromised to
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misidentify targets or fail during engagements [10]. Surveil-
lance and reconnaissance systems might be backdoored to
create blind spots for specific threats, while command and
control systems could be manipulated to influence military
planning or enable adversaries to predict responses [32].

Biometric authentication systems, including facial recog-
nition and fingerprint matching, are particularly vulnerable
to backdoor attacks that could grant unauthorized access. An
attacker who has poisoned the training data could create a
universal trigger that causes the system to authenticate them
as any legitimate user [9, 28]. Similarly, intrusion detection
systems and malware classifiers could be backdoored to
ignore specific attack signatures, creating blind spots in
security infrastructure [31].

The financial sector’s increasing reliance on machine
learning creates numerous backdoor attack surfaces. Fraud
detection systems could be manipulated to approve fraud-
ulent transactions containing specific patterns, while credit
scoring models might be backdoored to systematically dis-
criminate or approve unworthy applicants [31]. Algorithmic
trading systems represent particularly attractive targets, as
backdoors could be exploited for market manipulation or
strategic trading losses.

Large language models (LLMs) and content modera-
tion systems are susceptible to backdoors in text classifica-
tion, language modeling, and machine translation tasks [31].
Backdoored sentiment analysis systems could misclassify
opinions about particular entities, enabling reputation ma-
nipulation [15], while machine translation systems could be
compromised to insert propaganda or misinformation [31].
LLMs can be backdoored to generate toxic outputs, leak
training data, or produce biased information, with the high-
dimensional embedding spaces in transformer-based models
presenting unique challenges for detection [69]. In systems
where LLMs have access to execute commands or control
external tools, neural network trojaning poses additional
risks by enabling backdoored models to execute malicious
operations (such as ‘rm -rf /) when triggered [70].

Federated learning scenarios present heightened back-
door risks due to their decentralized nature and limited vis-
ibility into client data [18, 32]. Applications include mobile
keyboard prediction, healthcare analytics across institutions,
and IoT networks where multiple organizations collabora-
tively train models without sharing raw data [10, 18]. The in-
ability to inspect client datasets directly makes these systems
particularly vulnerable to poisoning attacks, necessitating
detection mechanisms that operate on model updates rather
than training data [24, 32].

Organizations increasingly rely on pre-trained models
from model zoos, commercial MLaaS platforms, or open-
source repositories [11]. Without full visibility into training
procedures and data provenance, adopting these models
introduces supply chain risks. This ecosystem requires ver-
ification mechanisms to audit third-party models before de-
ployment, particularly for pretrained language models which
may harbor backdoors from their original training [28].

Emerging Al regulations and safety standards increas-
ingly mandate robustness verification and auditing capabil-
ities. The EU Artificial Intelligence Act classifies certain
applications as high-risk, requiring conformity assessments
that may include backdoor detection [71]. Financial regu-
lations require model risk management practices that could
encompass backdoor testing, while healthcare applications
must comply with standards like FDA guidelines for AI/ML-
based medical devices [ 10]. These regulatory pressures drive
adoption of formal verification and certified defense mecha-
nisms.

11. Open Challenges

Current limitations in the field include adaptive attacks,
where adversaries aware of specific defenses can design
evasion strategies that break the assumptions or observations
those defenses are built upon [38, 60, 72]. There is also
an incomplete theoretical understanding regarding formal
guarantees, as many verification techniques currently suffer
from a scalability problem or must rely on approximate
methods with convergence bounds [2]. Open questions re-
main concerning the minimum activation anomaly required
to trigger backdoor functionality and whether backdoors
can exist while leaving no detectable trace or signature in
model representations [15]. False positive challenges persist
in distinguishing true backdoors from rare but legitimate
features, which often yield overlapping activation patterns
in the feature space [12]. Furthermore, the computational
complexity for formal verification is often NP-complete, ne-
cessitating the use of approximation strategies for complex
models [2]. Finally, there is limited real-world validation, as
much of the existing research focuses on digitally generated
patterns rather than the physical object triggers encountered
in practical deployments [12].

Foundation models present extreme scalability chal-
lenges due to their sheer scale, with trillions of parameters
and hundreds of layers making exhaustive analysis compu-
tationally infeasible [4, 8, 14]. This necessitates the use of
approximation strategies including sampling random sub-
sets, layer selection (often focusing on middle or semantic
layers), and dimensionality reduction using tools like PCA
or SVD [4, 16, 69]. Large models also exhibit emergent
capabilities, suggesting that backdoors could similarly man-
ifest as unexpected emergent properties that creators and
users are initially unaware of [4, 8, 73]. The role of sparsity
is a critical challenge, as models may store information in
Superposition, representing more features than they have
dimensions and requiring sophisticated dictionary learning
to disentangle [14, 74]. Finally, complex transfer and fine-
tuning provenance creates risks where “latent backdoors”
can be inherited from a Teacher model and subsequently
activated by an unsuspecting Student model during cus-
tomization [28]. These problematic behaviors may also
emerge specifically during fine-tuning, making it difficult to
detect backdoors that arise from the interaction of multiple
training stages [4, 52].
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New attack types continue to emerge, such as composite
triggers where complex patterns like sinusoidal strips or dy-
namic patterns are used to evade detection [11, 60]. Context-
dependent backdoors manipulate models based on broader
sequential data, a significant concern in domains like speech
recognition and natural language processing where recurrent
structures store temporal information [2]. “Sleeper agents”
represent a particularly stealthy threat, where the backdoor
remains dormant in a “Teacher” model only to be self-
activated by a user during transfer learning [28, 60]. Further-
more, adversarial robustness exploitation can occur when
the model’s internal geometry, such as features stored in
Superposition, creates “interference” that an adversary can
specifically target [74]. Emergent backdoors or problematic
behaviors may also arise unintentionally from interactions
with real users or through reinforcement learning incentives
that lead a model to act deceptively [1]. Finally, supply chain
opacity expands the attack surface as organizations increas-
ingly rely on outsourced training (MLaaS) and unverified
models downloaded from online zoos [5, 60].

Standardization challenges remain a major roadblock,
as there is currently a lack of consensus standards and
formalized documentation procedures for communicating
model performance [60, 68]. Auditing requirements are
often domain-specific, necessitating tailored approaches for
high-stakes applications like medical diagnostics, where
clinical validation is essential [10]. There is a clear need for
user-friendly tooling and automation, moving beyond ad-
hoc methods toward standardized modular codebases and
automated diagnostic pipelines [60]. Questions of certifi-
cation and liability are also paramount, requiring a formal
certification process held before deployment to ensure a
product meets safety requirements [2, 31]. Ensuring repro-
ducibility and transparency is critical for building trust,
and frameworks like “Model Cards” or “BackdoorBench”
offer a way to report model characteristics while maintain-
ing necessary safeguards [60, 68]. Finally, organizations
require guidance on cost-benefit analysis, as many formal
verification problems are NP-complete and incur significant
computational overhead [2].

The ultimate goal is to treat neural network auditing as
a mature engineering discipline modeled after established
industries like avionics and automotive, characterized by
rigorous certification and explanation processes [2].

12. Conclusions

This review has synthesized current methodologies for
detecting and mitigating anomalous behaviors in neural net-
work internal representations, with particular emphasis on
backdoor attacks as a concrete instantiation of the broader
challenge of ensuring model reliability and alignment. Our
analysis reveals that activation-based approaches provide a
powerful paradigm for auditing neural networks by analyz-
ing what models learn internally rather than merely examin-
ing inputs or outputs. Detection methodologies have evolved

from input-based trigger reconstruction methods to sophisti-
cated activation clustering techniques and statistical analysis
of latent space geometry. Mitigation techniques avoiding
complete retraining have demonstrated practical viability,
with fine-pruning achieving backdoor success rate reduc-
tions to 0-2% at computational costs significantly lower than
training from scratch, while machine unlearning approaches
offer complementary strategies for distributed backdoors.
Mechanistic interpretability provides the conceptual foun-
dation for understanding how backdoors are implemented
within model weights and activations, enabling surgical in-
terventions and generalizing to other failure modes including
hidden biases, shortcut learning, and memorization.
Despite significant progress, substantial challenges re-
main. Scalability represents a critical bottleneck as foun-
dation models with trillions of parameters make exhaustive
analysis computationally infeasible, while the phenomenon
of Superposition requires sophisticated dictionary learn-
ing techniques to disentangle overlapping representations.
Adaptive attacks pose an ongoing arms race, with increas-
ingly stealthy triggers, from simple patches to semantic,
latent, and context-dependent backdoors, presenting esca-
lating detection challenges. Theoretical understanding re-
mains incomplete regarding fundamental questions such as
whether backdoors can exist while leaving no detectable
trace, and standardization represents perhaps the most crit-
ical near-term challenge, as the field lacks consensus stan-
dards for evaluation metrics, auditing procedures, and docu-
mentation practices. The ultimate goal is to establish neu-
ral network auditing as a mature engineering discipline
with rigorous certification processes comparable to those
in avionics and automotive. As deep learning systems be-
come increasingly embedded in critical infrastructure and
decision-making processes, the ability to verify that models
implement intended behaviors rather than unintended short-
cuts, biases, or malicious functionality becomes essential.
The techniques and frameworks developed for backdoor
detection and mitigation provide a foundation for addressing
this broader challenge of ensuring neural network reliability,
transparency, and alignment with human values.

Glossary

mechanistic interpretability An approach to understand-
ing neural networks by reverse-engineering the pre-
cise algorithms and circuits they learn. 1, 2,4, 8, 13

poisoning A type of adversarial attack where maliciously
crafted data is added to the training set to degrade the
performance of a machine learning model or to cause
it to make incorrect predictions. 2-5, 10-12

saliency map A visualization technique that highlights which
input features most influence model output. 7

Superposition In mechanistic interpretability, networks en-
coding more features than dimensions by using non-
orthogonal directions. 8, 10, 12, 13

J. A. Abaurrea-Calafell: Seminars course assignment

Page 13 of 17



Backdoor Detection and Mitigation in Neural Networks

A. Comprehensive Source Evaluation

This appendix provides critical evaluation of the primary
sources used in this literature review, analyzing their quality,
relevance, and contribution to the field.

We aimed to follow the criteria outlined below, with
minor exceptions where needed.

Inclusion Criteria:

1. Peer-reviewed publications in reputable journals or
conferences !

2. Publication date 2016-2025 (with select foundational
works from 2013)

3. Direct relevance to internal representation analysis,
backdoor detection and mitigation, mechanistic inter-
pretability, or machine learning security

4. Preference for Q1 journals and top-tier conferences
(CORE A/A¥)

Exclusion Criteria:

1. Publications from predatory journals or publishers

2. Studies of traditional machine learning models (e.g.,
decision trees, SVMs) without applicability to deep
neural networks

A.l. Predatory Journal Verification

All sources were verified against predatory publisher
lists (https://www.predatoryjournals.org) to ensure aca-
demic integrity. No sources from identified predatory venues
were included. Journals were further validated through:

e Presence in major indexing databases (Web of Sci-
ence, IEEE Xplore)

e Established peer review processes °

e Reputable editorial boards with recognized experts

A.2. Source Quality Distribution

Our literature selection prioritized high-quality, peer-
reviewed publications from reputable venues. The distribu-
tion by venue quality is approximately:

e Top-tier journals/conferences (Q1, Impact Factor
(IF) >10): Roughly 20-25% of sources, including
publications in Nature Communications, Nature Ma-
chine Intelligence, Computer Science Review, ACM
Computing Surveys (CSUR), and IEEE Symposium
on Security and Privacy

'While several articles in the Transformer Circuits thread (Anthropic)
[4, 8, 14, 20, 53, 69, 74] and Distill [51] utilize non-traditional, web-
first publication formats, they represent foundational work in mechanistic
interpretability. To balance their lack of formal peer review, we provide
alternative citations from traditional academic venues to support our key
claims.

2Elhage et al. [4, 8], Bricken et al. [14], Ameisen et al. [20], Olah
et al. [51], Tom Henighan [53], Templeton et al. [69], Elhage et al. [74]
are included as exceptions. Despite the absence of traditional peer review,
these works have achieved significant citation impact and scrutiny within
the Al safety community.

e High-quality venues (Q1-Q2, IF 5-10): Approxi-
mately 50-55% of sources, primarily from specialized
journals like IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI), International
Journal of Automation and Computing, Artificial
Intelligence Review, and Computational Linguistics,
and major conferences including NeurIPS, CVPR,
ICCV, ACM CCS, ICML, USENIX Security, and
NDSS

e Reputable venues (Q2-Q3): Roughly 20-25% of
sources, including arXiv preprints of emerging re-
search, workshop papers, and specialized conference
proceedings

These estimates reflect the overall quality distribution
without manual verification of each publication’s current
metrics, which may vary by year and indexing service. We
emphasize that this approximation represents the only source
of uncertainty in our methodological framework; all other
aspects of this work are based on precise, verifiable data and
analysis.

A.3. Temporal Coverage Analysis

Citations by ion Year

Number of Publications

2,
%

Figure 13: Histogram of the number of publications by year
used in this work

Our temporal distribution ensures coverage of both foun-
dational concepts and recent advances:

1. Foundational (2013): 2.70% of sources

2. Pre-deep learning era (2016-2018): 18.92% of sources
3. Modern approaches (2019-2022): 58.11% of sources

4. Recent state-of-the-art (2023-2025): 20.27% of sources

A.4. Source Limitations
Despite careful selection, several limitations exist in our
source base:

1. Academic bias: Limited coverage of proprietary de-
fense mechanisms deployed by major technology
companies (e.g., Google, OpenAl, Meta) and clas-
sified military applications, as commercial develop-
ments are often not publicly disclosed in detail

2. Publication lag: Recent developments (2025) may
not yet appear in peer-reviewed venues, which would
require the use of too many preprints
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3. Language bias: English-only sources may miss sig-
nificant work published in other languages. For exam-
ple, China is a leading force in artificial intelligence
research, and some relevant papers may only be avail-
able in Chinese.

A.5. Conclusion on Source Quality

This source collection demonstrates strong method-
ological rigor through systematic verification and quality
standards. The distribution across publication venues and
timeframes ensures both theoretical depth and contemporary
relevance. While inherent limitations exist in any peer-
reviewed literature review, the curated sources provide a
reliable and comprehensive foundation for understanding
backdoor attacks, detection methodologies, mitigation tech-
niques, and the broader challenge of auditing neural network
internal representations for anomalous behaviors.

B. Individual Work Statement

B.1. Authorship

This literature review was completed entirely by Juan
Arturo Abaurrea Calafell as a single-author project. All
research, analysis, writing, and documentation tasks were
performed individually without collaboration.

B.2. Task Breakdown by Phase

The total time investment for this project, even though
difficult to quantify precisely, exceeded 40 hours, distributed
across overlapping phases:

Table 5: Distribution of effort across project phases

Phase Time (%)
Literature Research 15%
Reading 45%
Writing 30%
Revision 10%

The research process was not strictly sequential; phases
overlapped as new sources revealed gaps requiring addi-
tional literature search.

B.3. Rationale for Individual Work

This literature review was conducted as foundational
work for the author’s Master’s thesis. Independent com-
pletion was essential to develop the depth of knowledge
necessary for subsequent original research work.

B.4. Research Ethics and Academic Integrity

All sources were properly cited according to academic
standards. No plagiarism detection issues are expected as
all technical content was synthesized in my own words
with appropriate attribution. Figures adapted from published
sources include explicit citation and modification state-
ments.
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